首页> 外文OA文献 >Quantitative PET image reconstruction employing nested expectation-maximization deconvolution for motion compensation
【2h】

Quantitative PET image reconstruction employing nested expectation-maximization deconvolution for motion compensation

机译:使用嵌套期望最大化反卷积进行运动补偿的定量PET图像重建

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bulk body motion may randomly occur during PET acquisitions introducing blurring, attenuation emission mismatches and, in dynamic PET, discontinuities in the measured time activity curves between consecutive frames. Meanwhile, dynamic PET scans are longer, thus increasing the probability of bulk motion. In this study, we propose a streamlined 3D PET motion-compensated image reconstruction (3D-MCIR) framework, capable of robustly deconvolving intra-frame motion from a static or dynamic 3D sinogram. The presented 3D-MCIR methods need not partition the data into multiple gates, such as 4D MCIR algorithms, or access list-mode (LM) data, such as LM MCIR methods, both associated with increased computation or memory resources. The proposed algorithms can support compensation for any periodic and non-periodic motion, such as cardio-respiratory or bulk motion, the latter including rolling, twisting or drifting. Inspired from the widely adopted point-spread function (PSF) deconvolution 3D PET reconstruction techniques, here we introduce an image-based 3D generalized motion deconvolution method within the standard 3D maximum-likelihood expectation-maximization (ML-EM) reconstruction framework. In particular, we initially integrate a motion blurring kernel, accounting for every tracked motion within a frame, as an additional MLEM modeling component in the image space (integrated 3D-MCIR). Subsequently, we replaced the integrated model component with a nested iterative Richardson-Lucy (RL) image-based deconvolution method to accelerate the MLEM algorithm convergence rate (RL-3D-MCIR). The final method was evaluated with realistic simulations of whole-body dynamic PET data employing the XCAT phantom and real human bulk motion profiles, the latter estimated from volunteer dynamic MRI scans. In addition, metabolic uptake rate K-i parametric images were generated with the standard Patlak method. Our results demonstrate significant improvement in contrast-to-noise ratio (CNR) and noise bias performance in both dynamic and parametric images. The proposed nested RL-3D-MCIR method is implemented on the Software for Tomographic Image Reconstruction (STIR) open-source platform and is scheduled for public release. (C) 2016 Elsevier Ltd. All rights reserved.
机译:大体运动可能会在PET采集过程中随机发生,从而导致模糊,衰减发射失配以及动态PET中连续帧之间测得的时间活动曲线的不连续性。同时,动态PET扫描时间更长,因此增加了整体运动的可能性。在这项研究中,我们提出了一种精简的3D PET运动补偿图像重建(3D-MCIR)框架,该框架能够从静态或动态3D正弦图中稳健地解卷积帧内运动。提出的3D-MCIR方法无需将数据划分为多个门(例如4D MCIR算法),也不需要将访问列表模式(LM)数据(例如LM MCIR方法)与增加的计算或内存资源相关联。所提出的算法可以支持对任何周期性和非周期性运动的补偿,例如心肺运动或体动,后者包括滚动,扭曲或漂移。受到广泛采用的点扩展函数(PSF)解卷积3D PET重建技术的启发,在这里,我们在标准3D最大似然期望最大化(ML-EM)重建框架内引入了基于图像的3D广义运动反卷积方法。特别是,我们最初集成了运动模糊内核,将帧中每个跟踪的运动都考虑在内,作为图像空间中的其他MLEM建模组件(集成的3D-MCIR)。随后,我们用基于嵌套迭代Richardson-Lucy(RL)图像的反卷积方法替换了集成模型组件,以加快MLEM算法的收敛速度(RL-3D-MCIR)。使用XCAT体模和真实的人体整体运动曲线对人体动态PET数据进行逼真的模拟,对最终方法进行了评估,后者是根据志愿者的动态MRI扫描估算得出的。另外,用标准的Patlak方法产生代谢摄取率K-1参数图像。我们的结果表明,动态和参数化图像中的对比度噪声比(CNR)和噪声偏置性能均得到了显着改善。所提出的嵌套RL-3D-MCIR方法在断层图像重建软件(STIR)开源平台上实现,并计划公开发布。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号